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1 Introduction

“Homogeneity can refer either to variation of a property value between
separate units of the material, or to variation within each unit. It is always
necessary to assess the between-unit variation. Where the intended use
permits the use of part of a unit — for example, a small portion of a solid or
liquid material, or a small region of the surface — it is also usually neces-
sary either to assess the within-unit variability of the material (within-unit
heterogeneity) or to provide instructions for use that control the impact
of within-unit heterogeneity. These instructions can include, for example,
remixing of the sample and, for granular materials, a minimum sample size,
because the within-unit heterogeneity is directly re�ected in the minimum
size of subsample that is representative for the whole unit.”
— ISO Guide 35 (ISO, 2017, §7)

A reference material produced as a batch, which is distributed and intended to be
used in separately packaged portions, or units, (which may be ampoules, vials,
bottles, etc.), is said to be homogeneous at the physical scale (range of values
of mass or volume) of the units, when the between-units variability of measured
values is comparable to the typical measurement uncertainty associated with the
unit-speci�c measured values.
In this manual we refer to units as “bottles”, to avoid any possible confusion with
“measurement units.” Bottles often are arranged in boxes, and such grouping
may, but need not, re�ect the order in which the bottles were �lled with portions
of the material.
When aliquots may be drawn from each bottle and measured separately under
conditions of repeatability, then the uncertainty associated with the reference
value must include a contribution corresponding to the within-bottle variability
of the values of the property of interest. For this reason, homogeneity studies
typically compare the between-bottles variability of measured values, with their
within-bottle variability.
Most materials exhibit some level of heterogeneity, and the contribution that this
makes to the uncertainty associated with the reference value must be evaluated
and incorporated in the evaluation of the uncertainty that will be associated with
the reference value.
When the material is found to be signi�cantly heterogeneous, and this hetero-
geneity is su�ciently pronounced to render it un�t for its intended purpose,
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then the batch may be subdivided into several sub-batches whose heterogeneity
is acceptable, that will become separate reference materials, each with its own
reference value and associated uncertainty.
With the possible exception of solutions that do not involve immiscible liquids
and that experience will have shown to remain homogeneous during and after
packaging and storing, the homogeneity of reference materials should be evalu-
ated experimentally by conducting a homogeneity study. This need applies both
to solid materials (blocks, chips, granules, powders, etc.) and to gas mixtures.
A homogeneity study typically involves three phases: sampling, measurement,
and statistical modeling and data analysis of the results:� In most cases, sampling is either simple random sampling or multistage

(nested) random sampling. In all cases, the sampling scheme should be
suitably designed to capture all recognized sources of sampling uncer-
tainty. For example, �rst a sample of boxes is drawn by simple random
sampling from the set of boxes containing separately packaged bottles of
the reference material, next a sample of bottles is drawn from each of
the selected boxes, again by simple random sampling, and �nally several
aliquots are drawn from each bottle after thoroughly mixing the contents,
and a determination of the value of the measurand is made in each one
separately. In general, let �1,� ,… , ��� ,� denote the �� replicate determina-
tions made for bottle � = 1,… , �. Typically, these determinations are not
quali�ed with evaluations of associated uncertainty.� If a single measurement result (�� , �(��)) is obtained for each bottle, the
assumption is that the uncertainty �(��) expresses contributions from all
recognized, substantively signi�cant sources of uncertainty, not only lack
of repeatability. The {��} may, but need not be averages or some other
summary statistic of replicate determinations made of aliquots drawn from
each bottle: in some cases a single measurement is made for each bottle,
and in such cases only between-bottle variability can be gauged.� The goal of the statistical modeling and data analysis is to produce es-
timates of the variance components (Searle et al., 2006) attributable to the
identi�ed sources of variability that the design of the homogenization study
allows estimating.

The NIST Homogeneity Assessor (������) serves to characterize the homogene-
ity of a candidate reference material for a particular measurand, based either
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(i) on determinations of the value of this measurand made under conditions of
repeatability, in aliquots drawn from each of several bottles, or (ii) on individ-
ual measurement results for each of several bottles, each comprising a measured
value and an evaluation of associated uncertainty.
In the most common case, there is only one level of nesting, say where replicate
determinations are made of aliquots sampled from each bottle in a sample drawn
from a lot of bottles. The number of replicated determinations may vary among
bottles, and the number of bottles sampled from each box may be di�erent for
di�erent boxes, etc.
Section 2 summarizes the steps that need to be taken to use the ������. Sec-
tion 3 outlines the models and assumptions underlying the data reductions im-
plemented in the ������, and illustrates and discusses them as they are applied
to a set of measurement results for themass fraction of vanadium in a bituminous
coal (Possolo and Pintar, 2017).
After reading Sections 2 and 3, users should be ready tomake informed choices to
apply the ������ to their own data, and to interpret the results, without further
study of this manual. However, for the reader wishing to gain a more thorough
appreciation for the technology implemented in the ������, Section 4 presents
additional examples of application using data from the following studies, in all
cases providing background information on the study, detailing the data and data
reduction techniques that were used, and explaining the meaning of the results:

� Nitrogen (§4.1) in a synthetic mixture intended to mimic natural gas, where
within-cylinder variability is appreciably larger than between-cylinder vari-
ability, hence there is no reason to question homogeneity;� Methane (§4.2) in a synthetic mixture intended to mimic natural gas, which
illustrates the case where the variance component attributable to di�er-
ences between cylinders is signi�cantly greater than zero and the question
arises of how to handle the corresponding heterogeneity;� Barium (§4.3) in soil, whose treatment demonstrates how the ������ han-
dles the case where the data comprise individual measurement results for
several bottles.

The accompanying graphical representations of the results obtained in these ex-
amples, any pre-processing that the data will have had to undergo in preparation
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for their use in the ������, and also alternative analyses that are presented in
some cases, using methods not available in the ������, all were done using the
R environment for statistical computing and graphics (R Core Team, 2018).
Section 5 emphasizes that the ������ ought not be misconstrued as a toolbox
capable of addressing all cases likely to be encountered in homogeneity studies.
For example, the ������ does not allow consideration of covariates that may
have been measured alongside the measurand and that could help explain any
apparent heterogeneity and account for the corresponding uncertainty compo-
nents.
Section 6 summarizes technical details of the implementation and deployment of
the ������ either as a desktop application on a local computer, or as an appli-
cation available in the World Wide Web.

2 Quick Start

2.1 Access

The ������ is accessible as an R package,NIHOMA.App, that, once installed in
a local computer, enables access via a web browser. It is currently in the process
of being made accessible on the web at homogeneity.nist.gov,
Clicking on About the NIST Homogeneity Assessor brings up a page containing
general information and guidance about the application. After providing the
application with inputs on the Enter Data page, as outlined in §2.2, the user
should validate the inputs by clicking on theValidate Inputs button at the bottom
of the page. Assuming all inputs are valid, the message Model Inputs are Valid!
will appear. Otherwise, a red error message will be displayed, detailing why the
inputs are invalid. Upon verifying that that inputs to the application are valid, the
user simply clicks on the Fit Random E�ects Model button to begin the analysis,
which will automatically render in a new tab titled, Analysis Results.
Additional buttons at the bottom of the Enter Data page, shown in Exhibit 2,
allow the user to load and save data �les. Clicking the button labeled Save Data
File will parse user inputs and download a data �le in .csv format. Users may
upload previously downloaded data �les or may upload data �les of their own
creation in .csv, .txt, .xls, or .xlsx format using the Browse button. Upon
uploading a data �le, the user is asked to validate the inputs to ensure proper
parsing of user data. Users wishing to perform several analyses with di�erent
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Exhibit 1: User interface for the ������ application

data sets should to use the Clear Data button to delete all previously entered
data and reset all parameters.

Exhibit 2: Buttons for saving, loading, or clearing data on the ������
Enter Data page.
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2.2 General Inputs

Users are �rst asked to select the format for data entry from among the Repli-
cated Determinations per Unit and Single Measurement Result per Unit options
at the top of the page. The default option, Replicated Determinations per Unit,
can be used only when the user has several individual determinations available
for each bottle. Should the user only possess summary statistics for each bottle,
for example a single measured value and associated standard uncertainty, then
the user should select the data format option Single Measurement Result per
Unit.
Even when individual determinations are available that were made on aliquots
drawn from each bottle, the user may opt for the second option because this af-
fords the opportunity to recognize and express (in the input for associated uncer-
tainties) uncertainty components other than just the dispersion of the individual
determinations made in aliquots drawn from each bottle.

2.2.1 Replicated Determinations per Unit

General inputs for the Replicated Determinations per Unit format are as follows:

� MeasuredValues (�������)Magnitudes (numerical valueswithoutmea-
surement units) �1,� ,… , ��� ,� corresponding to�� replicates for group � (typ-
ically a group of determinations made for bottle � = 1,… , �) de�ned by the
sampling factors. Values must be entered separated by commas, and may
be written in scienti�c notation as in 3.52e1 or 352e�1, both meaning 35.2.� Sampling Structure (�������) A character string providing information
on the sampling structure of the measured values. The sampling structure
should be speci�ed as follows:

– Box, bottle etc. are examples of sampling factors, which are typically
nested within each other.

– Square brackets “[. . . ]” are used to denote nestingwithin a factor/level.
– Commas separate factors, as well as levels within the same factor.
– Repeat levels of most deeply nested factor as often as necessary to

match the corresponding measured values.
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� Measurement Units (��������) A character string specifying measure-
ment units for the measurand, which will be used in plots produced by
the ������. In addition to plain ASCII character text, units in the form of
symbols or Greek letters will be accepted provided that they adhere to the
principles governing mathematical annotation in R.� Measurand and Sampling Factor Names (��������): A list of names,
separated by commas, for the measurand and sampling factors. Names
should be ordered from left to right, beginning with the measurand then
proceeding left to right from least to most deeply nested factors. If this
�eld is left blank, default names of measured_value, sf_1, . . . , sf_j will
be used for the measurand and sampling factors 1, . . . , � respectively.� Coverage Probability (R������) A number � between 0 and 1 denoting
the probability with which the intervals given for the measurand, and for
the variance components, are believed to cover their targets. This user-
speci�ed coverage probability, �, also determines the signi�cance level � =1 � � that is used in hypothesis testing throughout the ������. Default is
0.95.

2.2.2 Single Measurement Result per Unit

General inputs for the Single Measurement Result per Unit format as as follows:

� Measured Value for Each Bottle (�������) �1,… , �� representing esti-
mates of the measurand for each of the � levels of a single sampling factor.
Values must be entered separated by commas, and may be written in sci-
enti�c notation: for example, 35.2, 3.52e1, and 352e�1, all denote the same
value.� StandardUncertaintyAssociatedwithEachMeasuredValue (�������)�1,… , �� representing standard uncertainties associatedwith themeasured
values �1,… , �� for each of the � levels for a single sampling factor. Values
must be entered separated by commas, and may be written in scienti�c
notation: for example, 0.52, 5.2e�1, and 52e�2 all denote the same value.

NOTE: �1, ..., �� are standard uncertainties (not variances), and hence have
the same measurement units as the measured values. In the case where the
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Mass Fraction Box Bottle

3.52 box1 bottle1
3.51 box1 bottle1
3.38 box1 bottle2
3.47 box1 bottle2
3.45 box2 bottle1
3.56 box2 bottle1
3.88 box2 bottle2
3.55 box2 bottle2

Exhibit 3: For a sampling structure with 2 boxes and 2 bottles sampled from
each box, as shown above, the input data would be speci�ed as follows:� Measured Values: 3.52, 3.51, 3.38, 3.47, 3.45, 3.56, 3.88, 3.55� Sampling Structure:

box1[bottle1, bottle1, bottle2, bottle2], box2[bottle1, bottle1, bottle2, bottle2]� Units: g/kg� Measurand and Sampling Factor Names: Mass Fraction, Box, Bottle� Coverage Probability: 0.95

{��} are averages of determinations obtained under conditions of repeata-
bility, then �� = ��/��� (Type A evaluation as in Equation (5) of the GUM)
is based on �� = �� � 1 degrees of freedom, where �� denotes the sample
standard deviation of the �� replicates.� Sampling Structure (�������) A character string providing information
on the sampling structure of the measurement values/uncertainties. The
sampling structure is expected in the following form.

– Commas separate levels within the same sampling factor. Only a sin-
gle sampling factor is accepted in the Single Measurement Result per
Unit.

– Factor levels match corresponding measurement results and uncer-
tainties.� Degrees of Freedom (��������) �1, ..., �� representing the degrees of free-
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dom on which the standard uncertainties �1,… , �� for each of the � sam-
pling factor levels are based. If supplied, degrees of freedom should be
entered separated by commas, and must be non-negative numbers.� Measurement Units (��������) A character string providing units that
qualify the numerical values of the measurement results and standard un-
certainties mentioned above. If speci�ed they will be used in labels of axes
of plots produced by the App. In addition to standard character text, units
in the form of symbols or Greek letters will be accepted provided that they
adhere to the principles governing mathematical annotation in R.� Column Names (��������): A list of names, separated by commas, for
the measurand, uncertainty, degrees of freedom (if supplied) and sampling
factor. Names should be ordered from left to right beginningwith the name
of the measurand, uncertainty, and degrees of freedom, followed by the
names of the sampling factor. If this �eld is left blank, default names of
measured_value, uncertainty, df, sf_1, will be used for the measurand,
uncertainty, degrees of freedom and sampling factor respectively. Note
that the user should only supply a column name for degrees of freedom
if degrees of freedom �1, ..., �� were also supplied. If no degrees of free-
dom were supplied, the user may enter names for the measurand, uncer-
tainty, followed by the names of the sampling factors, from left to right.
In the absence of degrees of freedom, default column names will be mea-
sured_value, uncertainty, sf_1.� Coverage Probability (R������) A number between 0 and 1 used to de-
termine the probability with which the intervals given for the measurand,
and for the variance components, cover their targets. The user speci�ed
coverage probability, �, also determines the signi�cance level � = 1�� that
is used in hypothesis testing throughout the ������. Default is 0.95.

2.2.3 Uploading and Downloading Data

������: In addition to manual data entry, users may also upload data in .txt,
.csv, .xls, or .xlsx format. The �rst column in the uploaded data �le must
contain values of the measurand (either replicated determinations or or single
measurement results depending on the option selected for data entry format),
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Mass Fraction Uncertainty df Bottle

3.52 0.11 3 bottle1
3.51 0.18 3 bottle2
3.38 0.31 2 bottle3
3.47 0.20 3 bottle4

Exhibit 4: Suppose we have a sampling structure with averages of determina-
tions made for each of 4 bottles bottles as given above. Data entry would look
as follows:� Measured Values: 3.52, 3.51, 3.38, 3.47� Standard Uncertainties: 0.11, 0.18, 0.31, 0.20� Degrees of Freedom: 3, 3, 2, 3� Sampling Structure: bottle1, bottle2, bottle3, bottle4� Units: g/kg� Column Names: Mass Fraction, Uncertainty, df, Bottle� Coverage Probability: 0.95

and must be numeric. If the Single Measurement Result per Unit option is se-
lected for Select Format For Data Entry, then the second column of data must
contain bottle uncertainties and must be numeric. A third column containing
degrees of freedom may be added, but is not required. If degrees of freedom
are included, they must be numeric and non-negative. Any additional columns
after the �rst (Replicated Determinations per Unit) or second/third (for Single
Measurement Result per Unit) may contain the names and levels of sampling fac-
tors, left to right from least to most nested. As a technical note, it is assumed that
any data �le has a header row containing column names. Headings MUST be
supplied on any uploaded �le. Users uploading data may supply units, in paren-
thesis, in the heading for the measured values column. An example might look
very similar to Exhibits 3 and 4, with "Mass Fraction" replaced by "Mass Fraction
(g/kg)". Users are asked to Validate their inputs after upload before proceeding
with any further analysis.
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��������: Users may download any data entered into ������ by simply
clicking the Save data file button. Data will saved in .csv format as a �le entitled
nihoma_data.csv or nihoma_data_case2.csv depending on the structure of
the user input.

2.2.4 Advisory

Exhibit 5: ������ interpreta-
tion of bottle1, bottle1, bottle2,
bottle2 sampling structure.

Exhibit 6: ������ interpreta-
tion of bottle1[replicate1, repli-
cate2], bottle2[replicate1, repli-
cate2] sampling structure.

Here we o�er some clari�cations that should help the user avoid any confusion.
Suppose we are working with a study design where two replicate determinan-
tions were made for each of two bottles. The following two entries to the sam-
pling structure �eld are not parsed equivalently:

� bottle1, bottle1, bottle2, bottle2� bottle1[replicate1, replicate2], bottle2[replicate1, replicate2]

Exhibits 5 and 6 show how the ������ would interpret each of these two sam-
pling structures. The latter treats replicate as a factor nested within bottle, and
will not produce the analysis matching the design of the sampling structure. That
is, the ������would interpret bottle1[replicate1, replicate2], bottle2[replicate1,
replicate2] as a sampling structure no di�erent than a sampling structure where
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2 bottles were nested within boxes, with a single measurement available for each
box-bottle pair. For correct parsing of the desired sampling structure, the user
Simply needs to match the factor nesting structure to the individual determi-
nations themselves (entered in the Measured Values �eld) rather than trying to
treat replicate as a sampling factor
A second point of clari�cation comes on the distinction between the potential
download �les nihoma_data.csv and nihoma_data_case2.csv. The naming
convention simply re�ects which data format the user was working with, to ease
in re-upload if the user desires to continue with the analysis in the future. One
should be careful to ensure that regardless of the name of their data �le, the se-
lected format for data entry does indeed match the format of the data uploaded.
Failure to do so would result in the treatment of standard uncertainties and de-
grees of freedom as levels of nested sampling factors or would interpret levels of
a sampling factor as standard uncertainties.

2.3 Further Inputs

No further inputs are required after clicking the Fit Random E�ects Model to
commence the analysis. If desired, however, the usermay supplywhich sampling
factors are to be used in rendering theGroup Subset Plot as shown in Exhibit 8
and described in more detail in §2.4.1.

2.4 Outputs

The results appear on a refreshed web page under the Analysis Results section.
Output di�ers slightly depending on the format of the data uploaded by the user.

2.4.1 Replicated Determinations per Unit� Random E�ects Model Summary: The random e�ects summary table
contains estimates and (100 ◊ �)% coverage intervals for the consensus
value of the measurand as well as within group standard uncertainties and
between group standard deviation on the basis of each sampling factor
(where � denotes the user entered coverage probability on the Enter Data
page).
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� Kruskal-Wallis Procedure Summary: A summary table for the Kruskal-
Wallis procedure contains � 2 test statistics and ��values for testingwhether
di�erences exist between group distributions. Di�erences are �rst tested
along outermost factor, and then again at each inner level of nesting. The
theory underlying the random e�ects model is reviewed in §3.1.3.� Levene’s TestOutput: A summary for Levene’s Test contains � test statis-
tics and ��values for testing whether di�erences exist between group vari-
ances. Di�erences are �rst tested along outermost factor, and then again
at each inner level of nesting. The theory underlying Levene’s Test is re-
viewed in §3.1.2.� NormalQQ-Plots: Anormal QQ-plot compares theoretical quantiles from
a normal distribution with observed quantiles from an input data set. ���
���� renders normal QQ-plots for each of the random e�ects and model
residuals. If all points fall inside of their respective light-blue bands, there
is no reason to reject the assumption of normality for the e�ect/residuals. If
the QQ-plots suggest otherwise, then the linear, Gaussian random e�ects
model may not be an appropriate procedure for assessing homogeneity.
The theory underlying the random e�ects model is reviewed in §3.1.1. Ex-
hibit 7 shows an example of normal QQ-plots for random e�ects.� Group Subset Plots: Group subset plots display distributions of the mea-
surand broken down by groups created from levels of up to two sampling
factors. The default plot places determinations of the measurand on the
Y-axis, the �rst listed sampling factor on the X-axis, and creates separate
plotting windows for each level of the second listed sampling factor, if ap-
plicable. The user can choose which sampling factor to display on the
X-axis with the Primary Sampling Factor drop-down menu. Additionally,
the usermay choosewhich sampling factor to create separate plottingwin-
dows for by using the Secondary Sampling Factor drop down menu. If the
user does not wish to create separate plots on the basis of a secondary sam-
pling factor, they may disable this feature by selecting the Ignore — Single
Variable Plot Only option from the Secondary Sampling Factor drop down
menu. The type of plot showing group distributions depends on the mini-
mum number of replicates per group, �. If � � 5, group distributions are
rendered as categorical scatter-plots. If 5 < � � 30, group distributions
are rendered as box-plots. In the case that � > 30, group distributions are
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rendered as ridgeline density plots. An example of a group subset plot is
shown in shown in Exhibit 8.

All summary tables can be downloaded in .txt or .tex format, and all plots can
be downloaded as .pdf �les, by clicking the appropriate save output option.

Exhibit 7: Example of normal QQ-plot for random e�ects output. Neither the random
e�ects due to the cyl sampling factor or model residuals lie outside of the light-blue
bands, and as such, their is no reason to reject the assumption of normality for either
distribution.

Technical Note: The algorithm used to �t the random e�ects model may not
converge. When this happens, a red error message will displayed. A Convert to
Single Measurement Result per Unit button will pop-up, allowing the user to
download their data in the form required for the Single Measurement Result per
Unit case, which can then be uploaded to the ������ to try and �t the random
e�ects model using su�cient statistics route. In this case, the following steps are
taken to convert data from the Replicated Determinations per Unit format to the
Single Measurement Result per Unit format.
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Exhibit 8: Example of a group subset plot. We see determinations of the measurand,
measured_value is on the Y-Axis while the primary sampling factor, sf_1 is displayed
on the X-Axis. Plots are subset by levels of a secondary sampling factor, sf_2. Here� = 17, so group distributions are rendered as boxplots. Individual values of the mea-
surand are displayed in black, with group means represented by red diamonds. The user
may change the orientation of the plot by using the Primary Sampling Factor and Sec-
ondary Sampling Factor drop down menus, then simply clicking the Refresh Plot button
to render the new plot.

Measured Values: �� = �� = 1��
����=1 ��,�

Uncertainties: �� = ����� = 1��� ◊
� 1�� � 1 ����=1(��,� � ��)2

Degrees of Freedom: �� = �� � 1
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2.4.2 Single Measurement Result per Unit� Random E�ects Model Summary: The random e�ects summary table
contains an estimate and (100 ◊ �)% coverage interval for the consensus
value of the measurand as well as an estimate of ��, the between-bottle
standard uncertainty (where � denotes the user entered coverage probabil-
ity on the Enter Data page). The model summary also includes the results
of Cochran’s Q Test for Heterogeneity.� NormalQQ-Plots: Anormal QQ-plot compares theoretical quantiles from
a normal distribution with observed quantiles from an input set of data.
The ������ renders normal QQ-plots for each of the random e�ects and
model residuals. If all points fall inside of their respective light-blue bands,
there is no evidence to reject the assumption of normality for the e�ect/residuals.� Summary Plot: The single measurement results per unit are plotted on
the Y-axis against levels of the sampling factor, displayed on the X-axis.
Single measurement results made in each bottle �1, ..., �� are marked with
red diamonds. Measurement uncertainties are displayed as purple line seg-
ments with range �� ± �� for � = 1,… , �. Finally, a rectangular area shaded
light blue centered around a dark blue line denotes �� ± �( ��), a consensus
value and a (100 ◊ �)% coverage interval for the true value of the measur-
and.

Exhibit 9: Example of a summary plot, part of the ������ output in the Single Mea-
surement Result per Unit case
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3 Orientation

3.1 Models & Assumptions

The ������ relies on a linear, Gaussian random e�ects model (Searle et al.,
2006) to estimate and evaluate the signi�cance of variance components that ex-
press heterogeneity. Once a variance has been found to be signi�cant, that is
attributable to variability at a particular level of sampling, the scientist respon-
sible for the production of the reference material will have to decide whether
the apparent heterogeneity is su�ciently small to be acceptable. If it is small
enough for the purpose that the material is intended to serve, then it will be in-
corporated in the uncertainty associated with the reference value. If it is much
too large, then the material may be subdivided into two or more subsets that will
be certi�ed separately.
A key assumption of the random e�ects model, as described in §3.1.1, is that fac-
tor levels, which in this case may be bottles or groups of bottles boxed together,
are representative samples drawn randomly from the population of bottles or
boxes containing aliquots of the material. This is ensured by a suitable sampling
design.

3.1.1 Linear, Gaussian Random E�ects Model

In this section, we review the theory underlying linear, Gaussian random e�ects
models when the material is sampled according to a nested factor design. For the
sake of simplicity, we consider the casewhere there are two sampling factors, one
nested within the other, for example bottles in boxes, and where multiple deter-
minations will be made of the contents of each bottle selected for examination.
The factor A denotes the box, and the factor B denotes the bottle, with B nested
within A. Suppose that there are � boxes, labeled �1,… , �� , and �� bottles �1,… , ���
in box �� , of which ��� will be selected for the homogeneity study, with 1 6 � 6 �
and 1 6 � � �� . If � determinations are made of the contents of bottle �� sampled
from box �� , then the random e�ects model treats the corresponding measured
values as outcomes of random variables represented as additive superpositions
of four e�ects:

���� = � + �� + ��(�) + ���� .
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���� The �th determination of the measurand in bottle �� selected from box �� .� The true value of the measurand in the batch of material that has been subdi-
vided into portions that were bottled and boxed separately.�� The e�ect of box �� . When di�erent boxes comprise bottles that were �lled
on di�erent days, some boxes may have average values of the measurand
higher than �, while other may have averages lower than �. Accordingly,
we model �1, ..., �� as a sample from a Gaussian distribution with mean 0
and standard deviation �A.��(�) The random e�ect of bottle �� drawn from box �� . Since some bottles may
have a value of the measurand higher than the corresponding box mean� + �� , while others may have it lower than it, we model the bottle e�ects�1(�), ..., ��� (�) as a sample from a Gaussian distribution with mean 0 and stan-
dard deviation �B.���� Measurement error in the �th determination made for bottle �� in box �� .
These errors are modeled as a sample from a Gaussian distribution with
mean 0 and standard deviation � .

Note that �B is assumed to be the same for all bottles (regardless of the box they
were selected from), and that � also is assumed to be the same for all determi-
nations (regardless of the bottle they pertain to). We can use Levene Test’s, re-
viewed in §3.1.2, to test the validity of these assumptions. In these circumstances,
the individual determinations are like outcomes of independent, identically dis-
tributed random variables {����}with common mean � and variance � 2

A +� 2
B +� 2,

and for this reason, � 2
A, � 2

B and � 2 are called variance components.
This speci�c example with two nested sampling factors may be generalized to
study designs with further levels of nesting, hence with additional e�ects and
corresponding variance components. In the most common case, there is only
a single sampling factor B, representing bottles, say. In this most simple study
design, the model reduces to ��� = � + �� + ��� .
3.1.2 Levene’s Test

Levene’s test serves to evaluate themodel assumption that thewithin-group vari-
ance, � 2, is equal for all sampling groups. This assumption is often referred to as
homogeneity of variance or homoscedasticity.
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In the ������, di�erences are �rst tested along outermost factor, and then again
at each deeper level of nesting. Suppose we have a sampling design with 2 boxes,
with 6 bottles drawn from each box, and 5 replicate determinations made of the
contents of each bottle. We �rst test whether there are signi�cant between-box
di�erences in the dispersions of values of the measurand. Then, we proceed to
test whether there are signi�cant between-bottle-box di�erences in dispersion.
Levene’s test statistic is de�ned as

� = (� � �)(� � 1) ���=1 ��(��� � ���)2���=1 ����=1(��� � ���)2 �
� — The number of sampling groups;� — The total number of replicates across all sampling groups;�� — The number of replicates in the �th sampling group;��� —The absolute value of the di�erence, |�������|, between the �th determination

of the measurand in the �th sampling group and the average determination
of the measurand in the �th sampling group;��� — The average value of ��� for the �th sampling group;��� — The average value of ��� across all � replicates.

When variances are homogeneous, � is approximately distributed as ���1,���
which can be used as a reference distribution to obtain approximate ��values
for signi�cance tests.

3.1.3 Kruskal-Wallis

The Kruskal-Wallis procedure is a non-parametric rank-based test for testing
whether di�erences exist between-group distributions corresponding to levels
of a single grouping factor. In the cases that Levene’s Test yields statistically sig-
ni�cant di�erences between group dispersions, or when the e�ects of the sam-
pling factors, or the measurement errors, are not consistent with the assumption
that they are samples from Gaussian distributions, the Kruskal-Wallis procedure
is preferable to the random e�ects model described in §3.1.1 for identifying the
existence of heterogeneity.
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In the ������, di�erences are �rst tested for the outermost factor, and then
again at each successively deeper level of nesting. Suppose we have a sampling
design with 2 boxes, with 6 bottles nested within each box, and 5 replicates taken
per bottle. We �rst test whether there are signi�cant di�erences between the 2
boxes’ distributions of determinations of the measurand. Then, we proceed to
test whether there are signi�cant di�erences between the 12 box-bottle distribu-
tions of determinations of the measurand. The test statistics is given by

� 2�� = (� � 1) ���=1 ��(� �� � �)2���=1����=1(��� � �)2
� — The number of sampling groups;� — The total number of replicates across all sampling groups�� — The number of replicate determations made in the �th sampling group;��� — The rank, among all replicates, of the �th replicate from the �th sampling

group;� �� — The average replicate rank (among all determinations of the measurand)
from the �th sampling group, equal to����=1 ���/��;� — The median rank among all replicates, that is (� + 1)/2.

While asymptotically the probability distribution of � 2�� is approximated by � 2��1,
it can be quite di�erent in cases where the number of replicates per group are
small. Hence, we used a bootstrapped version of the probability distribution of� 2�� when computing the ��value associated with the test.
It should be noted that the Kruskal-Wallis procedure is not a perfect alternative
to the random e�ects model in the case that the assumptions of the random ef-
fects model are not met. The Kruskal-Wallis procedure tests for di�erences in
distribution, and there are many ways that group distributions can di�er from
one another that do not involve di�erences between their means.

3.2 Illustration and Overview of Methods

In this section, we walk through an example demonstrating the use of the ���
���� and how one would interpret the results that it produces. The example

������ 2018 A����� 1 �� / ��



worked in this section is of the simplest, and most common variety, where mul-
tiple determinations of the value of the measurand are available for levels of a
single sampling factor. Additional examples, including those covering the Single
Measurement Result per Unit are given in §4.

3.2.1 Data

In this example, we will use the ������ to assess homogeneity of the mass frac-
tion of vanadium in a bituminous coal (NIST SRM 2684c). The results of two
determinations are given for 7 bottles, plus an additional single replicate avail-
able for an eighth bottle (Possolo and Pintar, 2017). The data used in this example
is presented in Exhibit 10.

3.2.2 Results and Analysis

The������’s�rst output is the random e�ectsmodel summary, presented below
in Exhibit 11. The random e�ects model summary provides estimates and 95 %
coverage intervals for the the Bottle uncertainty component, �B, the within-
bottle uncertainty, � , and the consensus value of themeasurand, �. Note that in
theApp, these three termswould appear as Sigma_Bottle, Sigma_Within_Group,
and Measurand, respectively, due to limitations on rendering symbols in Rmodel
outputs.
We see that the 95 % coverage interval for �B contains 0, meaning that there
is no evidence to suggest �B di�ers signi�cantly from 0 at the 0.05 signi�cance
level. One might be tempted to immediately conclude there is no signi�cant
heterogeneity, but such a conclusion should not be reached without some further
analysis. Levene’s Test yields ��value < 2.2 ◊ 10�16, suggesting that dispersions
di�er by bottle, and that the assumption of homogeneous variance is violated.
These results need to be takenwith a grain of salt, as there are only two replicates
per bottle, which is the bare minimum whereon to evaluate the dispersion of the
determinantions per bottle. At the very least we should turn to the Kruskal-
Wallis procedure to see if there are signi�cant di�erences between the bottle-
speci�c distributions of determinations. The resulting � 2�� produces ��value of
0.13, suggesting that there are no such di�erences are signi�cant. Notice that
this is the same conclusion one would have drawn when examining the random
e�ects model summary even though the validity of the model assumptions is
questionable.
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Mass Fraction (mg/kg) Bottle
15.93 B1
16.09 B1
15.90 B2
16.44 B2
16.16 B3
16.18 B3
17.14 B4
16.55 B4
16.01 B5
15.57 B5
16.77 B6
16.56 B6
15.70 B7
15.98 B7
16.89 B8

Exhibit 10: Determinations of themass fraction of vanadium bituminous coal from eight
bottles. A table in this format could be uploaded to the Enter Data page. In the case of
manual data entry, the user would enter the mass fractions, separated by commas, in the
Measured Values �eld, and in the Sampling Structure �eld: B1, B1, B2, B2, B3, B3,
B4, B4, B5, B5, B6, B6, B7, B7, B8.

term group estimate 2.5 % 97.5 % std.uncertainity�B Bottle 0.3848 0.0000 0.6300 —� Residual 0.2672 0.1263 0.4024 —� Fixed E�ects 16.29 15.90 16.62 0.1531
Exhibit 11: ������ random e�ects model summary for the mass fraction in bituminous
coal.
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The ������ normal QQ-plots produced for the bottle random e�ects, �B1, ..., �B8,
as well as for the residuals {���} are show below in Exhibit 12. Given that both
sets of points are well within their respective blue bands, there is no reason to
reject the normality assumptions of the random e�ects model. It seems as though
the results of Levene’s test could be due to such a small number of replicates per
bottle, and there is support for homogeneity across the eight bottles.

Exhibit 12: Decorated normal QQ-plots for the Bottle random e�ects and model resid-
uals

The purpose of the ������ is not simply to o�er scientists a binary determi-
nation on the existence of heterogeneity in their data, but rather to help them
evaluate how much any heterogeneity may contribute to the uncertainty of the
result, and to understand the underlying distribution of their data to identify and
size sources of heterogeneity when it is present.
Even though this example suggests the absence of any signi�cant heterogeneity,
how much additional uncertainty one should still add to the uncertainty budget
on account of apparent heterogeneity is a task left to the scientist. Given the
results suggested by the ������, a scientist would have ample reason not to add
additional uncertainty due to heterogeneity to their uncertainty budget. How-
ever, the more conservative scientist may choose to take ��� as an appropriate
estimate of the amount of additional uncertainty that should be factored into the
uncertainty budget.
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This vanadium example is illuminating, as it demonstrates the proper sequence
of analysis and considerations that should be taken into account when making
assessments of heterogeneity for candidate reference materials. As a �nal output
in this example, the������ renders the group subset plot displayed in Exhibit 13.

Exhibit 13: Group Subset Plot showing distributions of determinations of the value of
the measurand by bottle.

4 Examples

This section provides several further examples to demonstrate a wider range
of scenarios that may arise in homogeneity studies. §4.1 presents a case simi-
lar to the one presented in §3.2, where no statistically signi�cant heterogeneity
is present. §4.2 presents a study in which signi�cant heterogeneity is present,
and o�ers suggestions on how to proceed in the presence of heterogeneity. §4.3
demonstrates how to use ������ when data is entered in the Single Measure-
ment Result per Unit format.
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4.1 Nitrogen

The data comes from the Dutch National Metrology Institute (VSL), and consists
of measured values of the amount fractions of nitrogen in a synthetic reference
mixture designed to mimic natural gas (Beelen, 2016; van der Veen , 2017). Five
determinantions of the value of the measurand are available from each of 10
separate gas cylinders, depicted in Exhibit 14. The ������ random e�ects model
summary is show in Exhibit 15.

Exhibit 14: Group Subset Plot showing distributions of determinations of the value of
the measurand by cylinder. Cylinder means are denoted by red diamonds

term group estimate 2.5 % 97.5 % std.uncertainty�C Cylinder 7.558 ◊ 10�13 6.075 ◊ 10�13 8.994 ◊ 10�13 —� Residual 6.782 ◊ 10�4 5.451 ◊ 10�4 8.070 ◊ 10�4 —� Fixed E�ects 0.4251 0.4250 0.4253 9.591 ◊ 10�5
Exhibit 15: ������ random e�ects model summary for the amount fraction of nitrogen
in a synthetic gas mixture simulating natural gas.

We see estimates and 95% coverage intervals for the three parameters of inter-
est, �C, � , and � in the table below. The parameter most of interest in our assess-
ment of homogeneity is of course, �C, the between cylinder standard uncertainty.
While the left most end of the 95 % coverage interval for �C is not 0, ������ in-
dicates that �C doesn’t di�er from 0 signi�cantly, at least practically. More on
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how such a determination of signi�cance is made is presented in §6. This is
readily seen however, by simply comparing ��C with �� , the within-group stan-
dard uncertainty. Namely, ��C is roughly 9 orders of magnitude smaller than �� ,
so within-cylinder variation dominates between-cylinder variation, and as such,
it seems that there is no reason to reject the assumption of homogeneity. Before
we conclude any assessment of homogeneity, we must carefully check that the
assumptions made in �tting the random e�ects model are valid.
Levene’s Test yields a ��value of 0.6585, hence there is no reason to suggest
cylinder variances are heteroscedastic. Furthermore, the normal QQ-plots shown
in Exhibit 16 support the notion that the cylinder random e�ects, {��}, and the
measurement errors {���}, are like samples from Gaussian distributions.

Exhibit 16: Normal QQ-Plots for cylinder random e�ects and model residuals. Since
neither plot has any points falling outside their blue coverage bands, the assumptions of
the random e�ects model, presented in §3.1.1 are not violated.

In this case, the variance component attributable to di�erences between cylin-
ders does not di�er signi�cantly from 0 and its magnitude is negligible. In gen-
eral, when the between-groups variance component still does not di�er signif-
icantly from 0, but its apparent magnitude is not negligible, it is up to the sci-
entist responsible for the production of the material to decided whether the cor-
responding uncertainty contribution should or should not be recognized in the
combined uncertainty for the value assigned to the material.
Here, and indeed in the majority of homogeneity assessments, statistical signif-
icance is of secondary importance to the practical signi�cance of the size of any
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estimated heterogeneity for the purpose that the reference material is intended
to serve. Therefore, the output of the ������ serves as guidance and sugges-
tions helping scientists to make informed decisions — not to make decisions for
them.

4.2 Methane

The data in this subsection comes from the same VSL study (Beelen, 2016; van der
Veen , 2017) used as an example in §4.1, and consists of measured values of the
amount fractions of methane in a synthetic reference mixture designed to mimic
natural gas. Five determinantions of the value of the measurand are available
from each of 10 separate gas cylinders, depicted in Exhibit 17. Exhibit 18 shows
the ������ random e�ects model summary.

Exhibit 17: Group Subset Plot showing distributions of determinations of the value of
the measurand by cylinder. Cylinder means are denoted by red diamonds

We see estimates and 95% coverage intervals for the three parameters of inter-
est, �C, � , and � in the table below. The parameter of greatest interest for the
assessment of homogeneity is, of course, �C, the between-cylinder standard un-
certainty. The������ indicates that �C di�ers signi�cantly from 0. More on how
such a determination of signi�cance is made is presented in §6. This is readily
seen however, by simply comparing ��C with �� , the within-group standard uncer-
tainty. Speci�cally, the facts that the left endpoint of the 95 % coverage interval
for �C is greater than 0, and that ��C > �� , suggest that within-cylinder variation
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term group estimate 2.5 % 97.5 % std.uncertainty�C Cylinder 0.01062 0.004695 0.01610 —� Residual 0.009104 0.007122 0.01117 —� Fixed E�ects 85.9601 85.9529 85.9673 0.003598
Exhibit 18: ������ random e�ects model summary for the amount fraction of methane
in a synthetic gas mixture simulating natural gas.

is dominated by between-cylinder variation. Therefore, there seems to be su�-
cient evidence to reject the assumption of homogeneity. Before explaining how
one might proceed in such case, we should �rst validate the assumptions of the
random e�ects model.

Exhibit 19: Normal QQ-Plots for cylinder random e�ects and model residuals. Since
neither plot has any points falling outside their respective blue bands, the assumptions
of the random e�ects model, presented in §3.1.1 are not violated.

Levene’s Test yields a ��value of 0.8, hence there is no reason to suggest that
cylinder-speci�c variances di�er from one another. Furthermore, the normal
QQ-plots shown in Exhibit 19 support the notion that the cylinder random ef-
fects, {��}, and the measurement errors {���}, are like samples from Gaussian
distributions.
Regarding the heterogeneity that appears to be signi�cant, there are two possi-
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ble courses of action. If the apparent heterogeneity is excessive, then one option
is to split the lot of cylinders into two or more lots that are comparatively less
heterogeneous. Another option, which is far more practical, particularly in ex-
amples such as this one, where ��C is relatively small, is simply to add ��C to the
uncertainty budget and to propagate it to the �nal result, thus recognizing and
expressing this source of uncertainty.

4.3 Barium

The data explored in this subsection are from a VSL homogeneity study (van
der Veen, Linsinger, and Pauwels , 2001; Linsinger et al., 2001), although this
example is unrelated to work presented in §4.1 and §4.2. The data comprise 3
replicate determinations of the mass fraction of barium in each of 18 di�erent
soil samples. For the purposes of demonstrating how to use the ������ when
data is uploaded in the Single Measurement Result per Unit format, the original
data has been summarized as shown in Exhibit 20.
Entering the above into the ������ produces a summary table with the follow-
ing information:� Estimate of Between-Sample StandardUncertainty: ��� = 5.825mg/kg� Measurand Estimate and 95% Coverage Interval: �� = 318.73 ± 2.15mg/kg� Cochran’s Q Test for Heterogeneity: �(�� = 17) = 36.75, ��value =

0.003638

The results of Cochran’s � Test are strongly suggestive of heterogeneity across
the 18 soil samples, a hypothesis that is also supported by the summary plot
shown in Exhibit 21. A consequence of the reduction to the case of Single Mea-
surement Result per Unit is that evaluating the assumptions of the random e�ects
model becomes somewhat more di�cult. For example, we are not able to apply
Levene’s Test to assess the assumption of common variance for within-sample
replicates, as we don’t explicitly have access to the factor level distributions. (We
do have such access in this example because we have reduced the original, gran-
ular data to the summary statistics in Exhibit 20, but in general the more granular
data may not even exist, only a single measurement result for each unit.) Nev-
ertheless, one can still build and examine normal QQ-plots for sample random
e�ects and model residuals, as shown in Exhibit 22.
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Mass Fraction Uncertainty df Sample
(mg/kg) (mg/kg)

311.33 6.39 2 S0118
330.00 7.21 2 S0201
316.67 3.84 2 S0383
324.67 6.89 2 S0442
329.67 4.18 2 S0557
310.33 7.36 2 S0666
324.00 4.04 2 S0791
317.00 7.00 2 S0918
328.33 4.33 2 S1026
316.67 5.70 2 S1133
310.00 4.00 2 S1249
309.33 9.84 2 S1464
320.00 5.20 2 S1581
315.00 3.51 2 S1607
316.00 9.54 2 S1799
300.00 6.51 2 S1877
324.33 6.06 2 S1996
326.33 7.97 2 S2000

Exhibit 20: Barium data table for upload to the ������ in the Single Measurement
Result per Unit format.
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Exhibit 21: Averages of replicates per sample, and associated standard uncertainties,
for each of the 18 soil samples, as well as an estimate and 95 % coverage interval for the
consensus value of the measurand.

Exhibit 22: Normal QQ-plots for the 18 sample random e�ecs and model residuals
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The normal QQ-plots support the notion that the cylinder random e�ects, {��},
and the model residuals, {��} are like samples from Gaussian distributions. As-
sessing the statistical signi�cance of �S is slightly di�erent in the Single Mea-
surement Result per Unit case, because the ������ does not produce a cover-
age interval for �S. Rather, the determination of statistical signi�cance is done
through Cochran’s � Test. If the level of heterogeneity, captured in ��S, is accept-
able for the purpose the reference material is intended to serve, then the scientist
responsible for the production of the reference material can simply add ��S to the
uncertainty budget to re�ect the heterogeneity in the material, and fold it into
the evaluation of uncertainty associated with the reference value.
Again, as has been discussed with previous examples, in cases where there is no
statistically signi�cant heterogeneity, scientists have the option to factor in ��S
anyway as just described, for a more conservative uncertainty evaluation.

5 Advisory

This section serves to emphasize that the ������ ought not be misconstrued as
a toolbox capable of addressing all cases likely to be encountered in homogeneity
studies.
The ������ can handle studies with nested sampling factors, but does not cur-
rently support the addition of covariates that may have been measured alongside
the measurand and that could help explain any apparent heterogeneity. Further-
more, the ������ only supports “Matryoshka” nesting, one factor within an-
other within yet another etc., but does not support any sampling structures that
may be more complex, such as two factors nested within another factor but not
nested within each other. Lastly, at present, the ������ can only handle a single
sampling factor when there is a single measurement result per unit (rather than
multiple replicate determinations).
Data collection in studies producing candidate reference materials is often time
and labor intensive, hence very costly. One should realize that the smaller the
sample size, the more conservatively one should treat the ������’s output. To
best characterize heterogeneity, one may wish to carry out a pilot homogeneity
study that will produce preliminary estimates of the relevant variance compo-
nents, and then use these estimates to plan an optimally designed study, where
the number of bottles and the number of replicates per bottle is tailored to the
study requirements and to the actual material under examination.
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6 Implementation

The implementation of the facilities deployed in the ������ has been done ex-
clusively in the R statistical computing language (R Core Team, 2018), given R’s
�tness for purpose, wealth of specialized functionality, and universal availability.
The following packages are required for running the ������

Models� lme4 (Bates et al., 2018) — Random E�ects Model, Replicated Deter-
minations per Unit Case� metafor (Viechtbauer, 2017)— Random E�ects Model, Single Mea-
surement Result per Unit� coin (Hothorn et al., 2017) — Kruskal-Wallis Procedure� car (Fox et al., 2018) — Levene’s Test� boot(Canty and Ripley, 2017) — Dependency code to bootstap cov-
erage intervals for measurand in Averages and Uncertainties Case,
developed for NIST Consensus Builder (Koepke et al., 2017a,b)

Graphics� ggplot2 (Wickham et al., 2018a) — Grammar of Graphics framework
for all ������ plots� ggridges (Wilke, 2018)— Extension for ggplot2 for ridgeline den-
sity plots� gridExtra (Auguie and Antonov, 2017) — Extension for ggplot2
for combining several plots into a single plot� rlang (Henry and Wickham, 2018) — Parse text for graphics labels

Data Processing� dplyr (Wickham et al., 2018b) — Data processing throughout ���
����� readxl (Wickham and Bryan, 2018) — Read .xls and .xlsx �les
into R� broom (Robinson et al., 2018) — Render’s tidy summaries of model
summary tables
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� xtable (Dahl, 2016) — Render LATEXversions of model summary ta-
bles

Application Design� shiny (Chang et al., 2018) — Framework for the ������� shinyjs (Attali, 2018) — Javascript integration with shiny

To make the application accessible to users with no knowledge of R we have
created an easy-to-use graphical user interface displayed in a web browser em-
ploying facilities provided by the R package Shiny (Chang et al., 2018). NIST
eventually will host the ������ at homogeneity.nist.gov, with several instances
of the Shiny app running concurrently for load balancing. ������ is also avail-
able as an R package called NIHOMA.App, available via GitHub.
For the curious user, we add here a brief explanation of about how we deter-
mine whether variance components di�er signi�cantly from 0 in the Replicated
Determinations per Unit case.
Given a user speci�ed coverage probability 0 < � < 1, the������ displays 100◊�
% coverage intervals for each sampling factor’s variance component.
Determining statistical signi�cance can be established by ascertaining that the
lower endpoint of the coverage interval for the between-group standard uncer-
tainty is strictly greater than 0.
However, a statistically signi�cant variance component need not be practically
signi�cant. For example, when that lower endpoint is several orders of magni-
tude smaller than the within-group variance. However, when the magnitude of
the measurand is very small, a variance component may be within an exceed-
ingly small distance of 0 but still be both statistically and practically signi�cant.
For these reasons, we determine practical signi�cance as described next, where ��
denotes the estimate of themeasurand, �� thewithin-group standard uncertainty
for some sampling factor �, estimated by ���, and � the within-group standard
uncertainty, estimated by �� . Furthermore, ��(��) and ��(� ) denote the lower
endpoints of 100� % coverage intervals for �� and � , respectively.
The ������ decides that �� is both statistically and practically di�erent from 0
if at least one of the following criteria is met:� ��(��) > 0.1��(� );� ��(��) > �( ��).
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