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What are Collaborative Studies?

● Studies that combine data from several independent sources 
reporting a common measurement.

● Allows for analysis on larger set of data, and thus in theory, 
more trustworthy results.

● Important part of ANY scientific field.
● The statistical analysis used to combine results is called a 

meta-analysis. 



Collaborative Studies at NIST

● Inter-laboratory studies are an important part of establishing 
standards at NIST.
○ NIST researchers send for data to be collected by several 

labs/sources.
○ Upon the return of data, researchers must combine the 

each source’s estimate of the measurement in question in 
order to determine a consensus value.



Collaborative Study Example
● Measure of Interest: Newton’s Constant of Gravitation (G)

○ This problem has been of great interest to researchers at NIST. Dr. Antonio Possolo has also spent 
time examining this constant using several meta-analysis procedures.

● Experimental Data: 10 reported measurements (Mohr and Taylor, 2000)
○ There have been more recent studies, but this study has been chosen as a worked example for this 

presentation.

● Reported values (᭲i) and uncertainties (si) in 10-11 m3kg-1s-2

i 1 2 3 4 5 6 7 8 9 10

᭲i
6.6699 6.6726 6.6729 6.6735 6.6740 6.6742 6.6754 6.6830 6.6873 6.7154

si
0.0007 0.0008 0.0005 0.0029 0.0007 0.0007 0.0015 0.0011 0.0094 0.0005



Decomposing Uncertainty

● The ISO Guide to the expression of uncertainty in measurement 
(GUM) outlines two evaluations of uncertainty:
○ Type A: Evaluation of uncertainty through means of a statistical 

analysis of observed data.
○ Type B: Evaluation of uncertainty that does not involve statistical 

analysis of observed data.
● Dark Uncertainty: Uncertainty that is not visible/not accounted for.

http://theendlessfurther.com/wp-
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Decomposing Uncertainty
● In this project, two types of uncertainty are considered:

○ Within-Study Uncertainty (s2)
■ Type A evaluation of uncertainty
■ Reported by each lab/source

○ Between-Study Uncertainty (ᶦ2)
■ Not perfect correspondence with Type B evaluation of uncertainty
■ Not reported. Must be estimated.
■ Ideally helps reduce “dark uncertainty”
■ In this project, between-study uncertainty is allowed to impact each 

source individually



Decomposing Uncertainty
● In some cases, reported within study uncertainties are 

unreliable.
○ The reported uncertainties s2 are suggested as lower 

bounds for the true uncertainties ᷟ2

○ For the k-th lab, ᷟ2
k = s2

k + ᶦ2
k

True 
Uncertainty

Within Study 
Uncertainty

Between Study 
Uncertainty

= +



Why We Care About Uncertainty
● Combining results is more complicated than simply averaging all estimates.
● Values with smaller variances (i.e. more certainty) should get more weight.
● Problem: What if some within study uncertainties are unreliable?

i 1 2 3 4 5 6 7 8 9 10

᭲i
6.6699 6.6726 6.6729 6.6735 6.6740 6.6742 6.6754 6.6830 6.6873 6.7154

si
0.0007 0.0008 0.0005 0.0029 0.0007 0.0007 0.0015 0.0011 0.0094 0.0005

Low uncertainty for apparent outlier



The Project
● Test newly derived estimators for combining independent study results against 

existing estimators frequently employed in meta-analyses in hopes of 
establishing a standard technique.

● Estimators to compare:
○ Classical Maximum Likelihood Estimator  (᭲L)                        

○ Restricted Maximum Likelihood Estimator (᭲RL)

○ Bayes Posterior Mean Estimator (ᶖB)

○ Arithmetic Mean ( ᭲ )                                                          Well Established Technique

○ Graybill-Deal Estimator (Weighted Mean)  (᭲GD)                       Well Established Technique

○ DerSimonian-Laird Estimator (᭲DL)                                                    Well Established Technique
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Maximum Likelihood Estimators
● Unlike the previously established “state of the art” estimator 

(DerSimonian-Laird estimator), the between study uncertainties ᶦ2 are 
allowed to affect each individual study differently.

● Calculated as follows:
○ For each possible subset of labs 

■ Estimate ᶦ2
k > 0  for each lab in the subset, set remaining ᶦ2

k = 0
■ Estimate  ᷟ2

k = s2
k + ᶦ2

k

■ Using new uncertainties, compute ᷘ  and its corresponding likelihoods
○ Choose ᷘ estimates with maximum likelihood

^  ^

^ ^

^

^



Bayes (Posterior Mean) Estimator

● Noninformative prior distribution.
● As with Maximum Likelihood estimators, the between study uncertainty (ᶦ2) 

is allowed to affect each study differently.
● For ᶖB , there is added constraint that ᶦ2

k ≥ s2
k

● Calculated using techniques of numerical integration.
● Here ᶕ(y) =ᶕ(y, 1/2) = ᶢ−1/2  ∫   e−uu−1/2du is an incomplete gamma-function 

(with the related error function Erf(z) = ᶕ(z2).
0

y



Procedure for Comparing Estimators
● Lab variances s2 (within study uncertainties) are drawn at random from a 

uniform distribution between (0, 1) and fixed.
● Additional random noise multiplied by a factor ᶝ ∊ (0, 3] is added to some of 

the standard deviations to set “new” standard deviations for each simulation.
● Numbers are drawn at random from the standard normal distribution and 

multiplied by the corresponding “new” standard deviations, yielding lab means 
᭲. 

● For ᶝ ∊ (0, 3], 5000 random sets of lab means are generated. Estimators are 
computed for each set of lab means. ᶝ increases spread between lab means.



Evaluating Estimator 
Efficacy

The true mean of simulated data is 
zero, as lab means were drawn from 
the standard normal distribution. 
Estimators were compared using the 
following three criteria:

● Mean Squared Error:
○ The average distance (squared) between each estimator and the true value. 

● Coverage Probability:
○ The frequency with which each estimator’s confidence interval contained the true value.

● Confidence Interval Width:
○ The average width of a 95% confidence interval for each estimator.
○ Ensures high coverage probability isn’t result of excessively large interval width.

http://nysora.com/files/Garfield_musing_CIs_533965604.jpg



Results: Mean 
Squared Error

● The lower the Mean Squared Error, 
the closer the estimator is, on 
average, to the truth.

● Bayes ᶖB clearly outperforms other 
estimators, even as ᶝ gets larger.

● DerSimonian-Laird estimator seems 
to be most affected by increases in ᶝ.

● The often used Graybill-Deal 
estimator and the simple arithmetic 
mean are much more affected by 
increase in ᶝ than even ᭲DL.^



Results: Coverage 
Probabilities

● The larger the coverage probability, 
the greater the chance a random 
confidence interval for a given 
estimator will contain the truth.

● Bayes ᶖB clearly outperforms other 
estimators, even as ᶝ gets larger.

● Need to ensure that high coverage 
probability isn’t the result of overly 
large confidence interval.



Results: Confidence 
Interval Widths

● Notice Bayes ᶖB always has the 
smallest confidence interval width, 
on average.

● Unlike the DerSimonian Laird 
estimator, the width of confidence 
intervals for the Bayes ᶖB estimator 
remains fairly constant as ᶝ gets 
larger.



Back to Newton’s Constant
● The new techniques outlined in this project were used to produce the following estimates for 

Newton’s Gravitation constant using the data presented by Mohr and Taylor’s 2000 study:
○ Maximum Likelihood  (no penalty): ᷘ  = 6.6736 10-11 m3kg-1s-2

■ Increased uncertainty for labs 1, 3, 8, and 10

○ Maximum Likelihood (BIC penalty), REML, and Bayes ᶖB: ᷘ =  6.6735 10-11 m3kg-1s-2

■ Increased uncertainty for lab 10

i 1 2 3 4 5 6 7 8 9 10

᭲i
6.6699 6.6726 6.6729 6.6735 6.6740 6.6742 6.6754 6.6830 6.6873 6.7154

si
0.0007 0.0008 0.0005 0.0029 0.0007 0.0007 0.0015 0.0011 0.0094 0.0005

^

^



Back to Newton’s Constant

● Each of these estimators offers a better estimate of the current NIST 
standard value of ᷘ = 6.67408 10-11 m3kg-1s-2 than the value of 6.6833 
reported by the 2000 study.

● Note that the current NIST standard value, created in 2014, uses more 
recent (and probably more reliable) data than was available at the time of 
the 2000 study worked in this presentation.

● A similar analysis on 2002 data produced maximum likelihood and 
REML estimates of ᷘ  = 6.67413 10-11 m3kg-1s-2^



Conclusions and Notes

● These results suggest that Bayes ᶖB  may be better to use than the 
DerSimonian-Laird estimator when combining results in inter-laboratory 
studies (at least for small/medium sized studies).  

● While the majority of simulations were run with the number of labs set at n = 
9, simulations were also run with n = 5 and n = 12 to verify results. These 
numbers were chosen as they are plausible sizes for inter-laboratory studies 
as outlined by NIST.
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