

HARVARD T.H. CHAN

SCHOOL OF PUBLIC HEALTH

Introduction

Missingness in variables that define eligibility criteria presents a major challenge towards determining the eligible population when emulating a target trial with an observational study. In practice, patients with incomplete data are almost always excluded from analysis despite the possibility of selection bias.

Inverse Probability of Ascertainment Weights

Selection bias occurs when the treatment effect (eg. from a pooled logistic regression) among eligible complete cases $(E_{mk} = 1, R_{mk} = 1)$, θ , does not equal the treatment effect among the entire eligible population ($E_{mk} = 1$), ψ .

 $\mathsf{logit}[P(Y_{mk(t+1)}^{(a)} = 1 | \underline{E}_{mk} = 1, \overline{Y}_{mkt}^{(a)} = 0, A_{mk} = a)] = \psi_{0,t}^{(m)} + \psi a$ $\mathsf{logit}[P(Y_{mk(t+1)}^{(a)} = 1 | \underline{E}_{mk} = 1, \underline{R}_{mk} = 1, \overline{Y}_{mkt}^{(a)} = 0, A_{mk} = a) = \theta_{0,t}^{(m)} + \theta a$

Propose eligibility missing at random (MAR) assumption that eligibility ascertainment (R_{mk}) is independent of eligibility status (E_{mk}) given histories of treatment (A_{mk}) and covariates that **do not define study eligibility** L_{mk}^c

$$R_{mk} \perp\!\!\!\perp E_{mk} \mid \overline{\boldsymbol{L}}_{mk}^c, \overline{A}_{mk}, C_{mk} = 0$$

- Whether eligibility status can be ascertained is independent of what that eligibility status is, after accounting for everything observable for all patients.
- Can correct for selection bias via inverse probability weighting (IPW) as long as differences between types of eligible subjects are explained by observables.

$$W_{mk}^R = P(R_{mk} = 1 \mid \mathbf{L}_{mk}^c, A_{mk}, C_{mk} = 0)^{-1}$$

• Can be used along with IPW for confounding, non-adherence, etc.

We emulate a target trial examining the effect of bariatric surgery on time to incident microvascular disease among patients with type II diabetes (T2DM), using an EHR database (DURABLE) from 3 large Kaiser Permanente sites (Washington, North/South California). This operationalizes as a sequence of 84 trials between 2005-2011.

Eligibility criteria:

EHR Derived Measurements

Figure 2: Substantial heterogeneity in the patterns and frequency of observed information in the EHR making ascertainment study eligibility easy for some patients and difficult/impossible for others.

Adjusting for Selection Bias Due to Missing Eligibility Criteria in **Emulated Target Trials**

Luke Benz¹, Rajarshi Mukherjee¹, Rui Wang¹, David Arterburn² Heidi Fischer², Catherine Lee³, Susan M. Shortreed^{2,4} and Sebastien Haneuse¹

¹Harvard University ²Kaiser Permanente ³University of California San Francisco ⁴University of Washington

Target Trial for Bariatric Surgery

- BMI $\geq 35 \text{ kg/m}^2$
- T2DM as defined by any of the following • Most recent A1c measure > 6.5%
- Most recent blood glucose $\geq 126 \text{ mg/dL}$ • Current prescription for diabetes medication
- No history of microvascular disease
- No pregnancy w/in last 12 months

Sensitivity Analysis over Ascertaintment Lookback Windows:

- BMI assessed using the most recent value within {1, 3, 6, 12} months prior to baseline
- T2DM status was assessed using the most recent blood glucose lab measurements available with $\{1, 3, 6, 12, 18, 24\}$ months prior to baseline

Figure 3: Allowing longer lookback times increases the number of subject-trials for whom eligibility can be ascertained. However, measurement values from longer lookbacks may less accurately reflect a subjects' eligibility defining covariates.

Figure 4: Discrete hazard ratio estimates for the effect of bariatric surgery on microvascular outcomes. Estimates are reported using various combinations of inverse probability weights.

Results

- Difficulty ascertaining eligibility for subjects might cause researchers to lookback further in time to ascertain eligibility (Figure 2).
- Even in longest lookback eligibility missing for close to 50% of patients in EHR (Figure 3).
- Strong evidence that bariatric surgery is protective against incident microvascular disease among T2DM patients (Figure 4).
- Intention to treat (ITT) estimates show some degree of sensitivity to lookback length (Figure 4).
- Accounting for possible selection bias attenuates estimates 5-10% towards the null, even after accounting for confounding (Figure 4).

Summary

- Missing data often overlooked issue relative to confounding.
- Excluding patients with missing eligibility data makes analyses susceptible to selection bias.
- Inverse probability of ascertainment weights can mitigate the potential for selection bias.
- Method integrates seamlessly into existing TTE methods for dealing w/confounding, adherence,and censoring via IPW.

Learn More

- **Paper**: Benz, L., et al. "Adjusting for Selection Bias Due to Missing Eligibility Criteria in Emulated Target Trials." American Journal of Epidemiology, 2024.
- Code: https://github.com/lbenz730/missing_eligibility_tte

